Ht(matrix,
NA.method = "NPModel", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)"Hotdeck", "NPModel" (default), and "PModel".IP=NULL). The options available are "1PL", "2PL" (default), and "3PL".matrix.
In case no ability parameters are available then Ability=NULL.Ability=NULL). The options available are "ML" (default), "BM", and "WL".method="BM". Default is 0.method="BM". Default is 1.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.Ht is maximum 1 for respondent $n$ when no respondent with a total score smaller/larger than $S_n$ can answer an item correctly/incorrectly that respondent $n$ has answered incorrectly/correctly, respectively. Ht equals zero when the average covariance of the response pattern of respondent $n$ with the other response patterns equals zero. Hence, (potentially) aberrant response behavior is indicated by small values of Ht (i.e., in the left tail of the sampling distribution). The Ht statistic was shown to perform relatively well in several simulation studies (Karabatsos, 2003; Sijtsma, 1986; Sijtsma and Meijer, 1992, Tendeiro and Meijer, 2014).
Missing values in matrix are imputed by one of three single imputation methods: Hotdeck imputation (NA.method = "Hotdeck"), nonparametric model imputation (NA.method = "NPModel"), and parametric model imputation (NA.method = "PModel"); see Zhang and Walker (2008).
IRT.PModel = "1PL","2PL", or"3PL"). Item parameters (IP) and ability parameters (Ability) may be provided for this purpose (otherwise the algorithm finds estimates for these parameters).Guttman, L. (1950) The basis for scalogram analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A. Star & J. A. Claussen (Eds.), Measurement and precision (pp. 60-90). Princeton NJ: Princeton University Press.
Karabatsos, G. (2003) Comparing the Aberrant Response Detection Performance of Thirty-Six Person-Fit Statistics. Applied Measurement In Education, 16(4), 277--298.
Mokken, R. J. (1971) A theory and procedure of scale analysis. Berlin, Germany: De Gruyter.
Sijtsma, K. (1986) A coefficient of deviance of response patterns. Kwantitatieve Methoden, 7, 131--145.
Sijtsma, K., and Meijer, R. R. (1992) A method for investigating the intersection of item response functions in Mokken's nonparametric IRT model. Applied Psychological Measurement, 16(2), 149-157.
Tendeiro, J. N., and Meijer, R. R. (2014) Detection of Invalid Test Scores: The Usefulness of Simple Nonparametric Statistics. Journal of Educational Measurement, 51(3), 239-259.
Zhang, B., and Walker, C. M. (2008) Impact of missing data on person-model fit and person trait estimation. Applied Psychological Measurement, 32(6), 466--479.
C.Sato# Load the inadequacy scale data (dichotomous item scores):
data(InadequacyData)
# Compute the Ht scores:
Ht.out <- Ht(InadequacyData)Run the code above in your browser using DataLab